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A D M I S S I B L E  F O R M S  O F  P L A S T I C I T Y  R E L A T I O N S  

F R O M  T H E  V I E W P O I N T  OF T H E  U N I Q U E N E S S  T H E O R E M  

A . I .  Chanyshev  UDC 539.374 

At present, there are a great number of mathematical elastoplastic-medium models which are different 
in form and content [1, 2]. In constructing constitutive relations, each additional-loading region is divided into 
several nonintersecting regions in each of which stress-strain relations are of a differential-linear character. 
Cases are possible where strain (or stress) increments undergo a discontinuity in going from one to another 
additional-loading region and when there is no local potential in the additional-loading regions. 

At the same time, there are restrictions on admissible forms of plasticity relations, which follows, for 
example, from Klushnikov's macrodeterminism postulate: (1) the local potential in each additional-loading 
region; (2) the continuity of a transition from one to another additional-loading region. These restrictions are 
such that they are "not satisfied by the endochronic plasticity theory, by many versions of the constitutive 
relations in the theory of elastoplastic processes, and by the sliding-type theories" [3, 4]. In essence, among 
the theories known for the time being, only the Reiss-Laning plastic-flow theory satisfies these restrictions. 

Despite the restrictions mentioned above, they are disregarded with reference to the fact that plasticity 
should take into account the order of application of the load, i.e., the existence of a local potential is not 
obligatory. This forces us to consider again the derivations of the proposed restrictions to exclude any doubts 
in the correctness of these derivations. In this connection, we would like to consider the uniqueness theorem 
for solution of the elastoplastic problem in the small, namely, to consider the constitutive relations in a general 
enough form and the boundary-value elastoplastic problem, and to find, from the uniqueness of the solution 
of this problem, restrictions on admissible forms of the constitutive relations of plasticity that were indicated 
above. 

To implement our plan, we have to choose a mathematical plasticity model. We assume that this model 
is such that there are only two additional-loading regions separated by a certain plane with the equation 

.f, = f(Aakt(O, avq(G)) = 0 (1) 

(the introduction of only two additional-loading regions does not lead to loss of generality). We also assume 
that the function fn is linear with respect to Aakl(t) and is not decreasing relative to avq(t,, ). Here t is the 
load parameter which varies from 0 to T, to = 0 < tl < 12...  < tN = T are the division points for the 
interval [0, T], and Aakz(t) = akz(t) - akz( tn )  (tn ~< t ~< t,*+l). The determining plasticity relations in the 
additional-loading regions are of the form 

Aei i ( t  ) = Aijkl(anq(tn))Aakl(t  ) for fn = f(Aat~t(t) ,  apq(tn)) > 0, (2) 

A~ij(t) = Bijkt(apq(tn))Aakt(t)  for fn = f (Aak t ( t ) ,  anq(tn)) <~ O, (3) 

where Aijkl and Bijkt are the pliability-tensor components which are constant for tn <~ t < tn+l and varying 
together with fn at moment t = t ,+l ,  and Aeij(t) = eli(t)  - eli(t,,). In the general case, Aijkz ~ Aklij and 
Bijkt ~ Bk~ij. We call conditionally the regions in which relations (2) and (3) are satisfied regions P and Y. 

Now we begin to solve the elastoplastic problem. We consider the static problem for a reinforcing 
material. The problem is formulated as follows: let the principal stress-strain state of a body, which corresponds 
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to the loads p(tn) specified on one part of the boundary S and to the displacement vectors u ( t , )  specified on 
the other part of this boundary, be known at moment t = t , .  Then the stresses and the displacements vectors 
vary at moments t (tn ~< t ~ tn+1) and reach the values p(tn+l) and u(t,,+l) at moment t = tn+l. It is necessary 
to determine the stress-strain state increment which corresponds to the load Ap(tn+l)  = p(t, ,+l) - p(tn) and 
displacement-vector Au( tn+l )  = u( tn+l)  - u(tn) increments. 

After this problem is solved, the principal stress-strain state is summed with the increment obtained, 
and we have a new principal state, i.e., the situation repeats. One should note that a transition from state p(tn), 
u(tn) to state p ( t ,+ l ) ,  u( tn+l)  occurs at each point of the body surface in a A-tube, i.e., this transition can, 
generally speaking, vary to a certain extent, which is connected with technical capabilities of loading systems. 
It is clear that these variations should not introduce any significant correlations into the increment of the 
body's stress-strain state at step At  = t ,+ l  - t , ,  otherwise the solution of any problems becomes problematic. 
This circumstance should be taken into account in solving the initial problem via the constitutive relations 
for a medium. 

We consider the formal proof of the uniqueness theorem when relations (2) and (3) are used. Note that 
this proof coincides, in outline, with that  given by Koiter [5], Hill [6], and Ivlev and Bykovtsev [7], where the 
uniqueness of the solution of the elastoplastic problem was studied in the case of application of the plastic-flow 
theory. 

For example, we assume that  two solutions of the elastoplastic problem are obtained: Aa}j, Au! and 

Aa/zj, Au~ which satisfy the same boundary conditions. Let us check whether it is possible that Aalj  r Aa]j 
and Au~ 5r u~ within the framework of (2) and (3). We represent the strain region V as a sum of four 
regions: V = V1 + V2 + Va + 1/4. The initial stress-strain state is the same in both cases. We assume that an 
active additional loading occurs in the region V1 for both solutions, the plastic-strain increment occurs for the 
first solution and the increment of only the elastic strain occurs in region V2 for the second solution, elastic 
unloading and active loading occur in region V3 for the first and second solutions, respectively, and the strain 
increments are elastic in region 1/4 for both solutions. We write the differences, i.e., the solutions, and denote 
them by A o i j  = Ao'lj  - Ao'?j and Aui  = Au 1 - Au, 2" �9 For the solution, we have 

/ / 1 - (4/ 0 = A a i jn iA u i  dS = A a i j A g i j  d V  (Agij = Aeij 
s v 

Representing the volume integral as a sum of four integrals over regions V1, V2, V3, and V4, we obtain 

Aaij  )(Aeii - dV A %  ) ( A %  - A %  ) 

v vl v2 

- A %  ) ( a %  (5) - Aeij ) dV. -- Ao'i j  ) ( A s i j  
va V4 

The superscripts P and Y in the expressions Aalj ,  Acr2j, and Ar 1., Ar refer to the region to which the 

additional load is directed. Since A e l f  = AijklAa~ P and Ae2/P = AijklAa 2P, we have A r  AG 2P = 

Aijkt(Aa~ P - Ao'~(). Similarly, we have Aei�89 Y - Ar = Bq~a( A a ~  - Aa2y ). 
We study relation (5). For uniqueness of solution, it suffices to show the positiveness of the integrands 

in each integral that was given above. To do this in the first and last integrals, it is necessary and sufficient 
that the tensors A(iiki) and B(iikl) be positive define. Here Aqkl = A(iikl ) + A[ijkl], Bijld = B(iikl ) + B[ijkl], 
A(ijkl) , B(ifla ) and A[iikt], B[ijkl] are the symmetric and skew-symmetric parts of the tensors Aiild and Biikl. 

Using the representation of Ae P = (Aij~a - Bijkz)A aP + BiiktAa~,  we transform (5) into the form 

f A a i j A g i j d V = f A r i j B i j k l A l " k l d V + / A v i j ( A i j k I - B i j k l ) A ' r k l d V  
v v v~ 

+ / (Ao '~ / : ' -  A a 2 ~ ) ( A i j k t -  Bi ik , )AalPdV + / ( A o ' ~  [ - Aa~Y) (Aqk t -  Bqk,)Aa~Pdv,  (6) 

v2 v3 
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fn=O 

Fig. 1 

where Ar = A a  1P - A a  2P in volume V1, Arij = A~ 1P - Act/2Y in volume 1:2, ATij = Act 1Y - Act 2P in 

volume 1/3, and A'rij = Aa  1Y - Aa~ Y in volume V4. 
We now consider relation (6). For positiveness of the integrand in the second integral of (6) on the 

right-hand side, it is necessary that  the tensor A(ijkt) - B(ijkt) be positive define. To analyze the integrands 
in the third and fourth integrals of (6), we introduce the vector representation of tensors. In this connection, 
we have to give some explanations.  Let T1, T2, . . . ,  T6 be the orthonormalized tensor bases [8, 9]. For two 
tensors, for example, for stress and strain tensors, the scalar product  is found according to the formula 
(Ta, T~) = aijeij in t roduced by Novozhilov [8]. Therefore, it becomes clear how to define the orthogonality 
and orthonormalization notions. For two tensors, for example, for Ta and T~, one can introduce the notions 
of their lengths and the angle between them.  In this case, the formula 

cosc~ = ITr IT~l (7) 

is valid, where a is the angle between Tr and T~. Using the representation (7), we analyze the sign of the 
integrands in the third and fourth integrals. In the given Euclidean tensor space, we give the plane f ,  = 0, 
the tensors TYAa and TPAo, and the  plastic-strain increment tensor (see Fig. 1): TA~, = ( A i j t t -  Bijki)"" TPr 

We introduce the unit  tensors fi and t directed along the normal and tangentially to the plane fn = 0. 
Let the tensor TAep have a nonzero projection in the direction t. It is of interest whether  the situation is 
possible where the angle between the tensors TAep and TPAa-TYAo is obtuse or, what is the same, the integrands 
are negative in the integrals indicated above (see Fig. 1). Clearly, the scalar product  of the tensors Taep and 
TPAo - TY~, will be positive if and only if the tensor TAep is directed along the normal to the surface fn = 0, 
i.e., the equality (TAep, t') = 0 should occur and, hence, we obtain the plastic-flow theory. For increments of 
plastic strains, we separate the orthogonal eigenbasis coinciding with the basis fi, i and, therefore, we have 

A[~/tq - B[/jtq = 0. (8) 

Henceforth, the tensor Bijkt is symmetr ic  (B[ijkt] = 0), which is connected with the energy considerations in 
elasticity. As a result, using (8), we obtain A[ijtt] = O. 

Thus, considering the uniqueness of the solution of the elastoplastic problem in the small, we obtain 
the same restrictions on the allowed forms of plasticity relations that  were proposed by Klushnikov [3]. Under 
these restrictions, all the integrands in (6) are positive. For the expression on the right-hand side to be zero, 
it is necessary and sufficient that  all Arij be equal to zero. This means that  the volumes 1/2 and Vs should be 
zero. Thus, the uniqueness theorem in the small for a reinforcing body is considered. 

R e m a r k  1. The  application of the deformation theory of plasticity, which is written in increments, 
leads to nonunique solutions of the elastoplastic problem, because there is a discontinuity in the strain- 
increment tensor in the direction of tensor t. The deformation theory of plasticity can be used for solution of 
elastoplastic problems if it is writ ten in full stresses and strains. 
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Fig. 2 Fig. 3 

~o(tn+O 

R e m a r k  2. Relations (2) and (3) are true if the additional-loading paths connecting two close points 
in the stress or strain space do not intersect the plane fn = 0, i.e., they are of the form shown in Fig. 2. 

If the loading path in the interval of load-parameter variation from t = tn to t = t,,+l intersect the 
plane fn = 0, as in Fig. 3 (intersections can be several in number), we obtain the following relations to define 
the strain increments Ar 

tn+l 

Ar = dAeij(t) = Ar t,, + Aeij(t , tn < t. < tn+l. 
tn 

It is evident that in this case we have, instead of (2) and (3), the relations between the strain and stress 
increments which include the magnitudes of the discontinuities of the strain or stress increments in passing 
through the boundary separating the regions P and Y. The number of discontinuities is determined by 
variations in loads p(t) and displacements u(t) about the specified loading programs. This circumstance is a 
source of the nonuniqueness of the solution of boundary-value problems as well. To make the relations between 
stress and strain increments independent of the path of additional loading, which connects two infinitely close 
points in the stress-strain space, it is necessary and sufficient that they go continuously from relations in one 
additional-loading region to those in another region. 
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